410 research outputs found

    Multidimensional extension of the Morse--Hedlund theorem

    Full text link
    A celebrated result of Morse and Hedlund, stated in 1938, asserts that a sequence xx over a finite alphabet is ultimately periodic if and only if, for some nn, the number of different factors of length nn appearing in xx is less than n+1n+1. Attempts to extend this fundamental result, for example, to higher dimensions, have been considered during the last fifteen years. Let d≥2d\ge 2. A legitimate extension to a multidimensional setting of the notion of periodicity is to consider sets of \ZZ^d definable by a first order formula in the Presburger arithmetic . With this latter notion and using a powerful criterion due to Muchnik, we exhibit a complete extension of the Morse--Hedlund theorem to an arbitrary dimension $d$ and characterize sets of $\ZZ^d$ definable in in terms of some functions counting recurrent blocks, that is, blocks occurring infinitely often

    Asymptotic properties of free monoid morphisms

    Full text link
    Motivated by applications in the theory of numeration systems and recognizable sets of integers, this paper deals with morphic words when erasing morphisms are taken into account. Cobham showed that if an infinite word w=g(fω(a))w =g(f^\omega(a)) is the image of a fixed point of a morphism ff under another morphism gg, then there exist a non-erasing morphism σ\sigma and a coding τ\tau such that w=τ(σω(b))w =\tau(\sigma^\omega(b)). Based on the Perron theorem about asymptotic properties of powers of non-negative matrices, our main contribution is an in-depth study of the growth type of iterated morphisms when one replaces erasing morphisms with non-erasing ones. We also explicitly provide an algorithm computing σ\sigma and τ\tau from ff and gg.Comment: 25 page

    Multidimensional Generalized Automatic Sequences and Shape-symmetric Morphic Words

    Get PDF
    An infinite word is S-automatic if, for all n>=0, its (n + 1)st letter is the output of a deterministic automaton fed with the representation of n in the considered numeration system S. In this extended abstract, we consider an analogous definition in a multidimensional setting and present the connection to the shape-symmetric infinite words introduced by Arnaud Maes. More precisely, for d>=2, we state that a multidimensional infinite word x : N^d \to \Sigma over a finite alphabet \Sigma is S-automatic for some abstract numeration system S built on a regular language containing the empty word if and only if x is the image by a coding of a shape-symmetric infinite word

    Abstract numeration systems on bounded languages and multiplication by a constant

    Get PDF
    A set of integers is SS-recognizable in an abstract numeration system SS if the language made up of the representations of its elements is accepted by a finite automaton. For abstract numeration systems built over bounded languages with at least three letters, we show that multiplication by an integer λ≥2\lambda\ge2 does not preserve SS-recognizability, meaning that there always exists a SS-recognizable set XX such that λX\lambda X is not SS-recognizable. The main tool is a bijection between the representation of an integer over a bounded language and its decomposition as a sum of binomial coefficients with certain properties, the so-called combinatorial numeration system
    • …
    corecore